Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prepare and analyze Rydberg states with orbital quantum numbers using three-optical-photon electromagnetically induced transparency (EIT) and radio frequency (rf) dressing, and employ the high- states in electric-field sensing. Rubidium-85 atoms in a room-temperature vapor cell are first promoted into the state via Rydberg-EIT with three infrared laser beams. Two rf dressing fields then (near-)resonantly couple the , and Rydberg states. The dependence of the rf-dressed Rydberg-state level structure on rf powers, rf and laser frequencies is characterized using EIT. Furthermore, we discuss the principles of dc-electric-field sensing using high- Rydberg states and experimentally demonstrate the method using test electric fields of V/m induced via photo-illumination of the vapor-cell wall. We measure the highly nonlinear dependence of the dc-electric-field strength on the power of the photo-illumination laser. Numerical calculations, which reproduce our experimental observations well, elucidate the underlying physics. Our paper is relevant to high-precision spectroscopy of high- Rydberg states, Rydberg-atom-based electric-field sensing, and plasma electric-field diagnostics. Published by the American Physical Society2024more » « less
-
We report a measurement of the dynamic (ac) scalar polarizability of the 5D3/2 state in 85Rb atoms at a laser wavelength of 1064 nm. Contrary to a recent measurement in Phys. Rev. A 104, 063304 (2021), the experiments are performed in a low-intensity regime in which the ac shift is less than the 5D3/2 state’s hyperfine structure, as utilized in numerous experiments with cold, trapped atoms. The extracted ac polarizability is α5D3/2=−499±59 a.u., within the uncertainty of the aforementioned previous result. The calibration of the 1064 nm light intensity, performed by analyzing light shifts of the D1 line, is the main source of uncertainty. Our results are useful for applications of the Rb 5D3/2 state in metrology, quantum sensing, and fundamental-physics research on Rydberg atoms and molecules.more » « less
An official website of the United States government
